

June 11, 2015 29

Subsequent steps are as for publishing any catalog entry. First editing the human-readable description:

Then reviewing the catalog entry:

June 11, 2015 30

Before publishing:

After publication, you data persists in a CLASP back-end database, and your dataset is visible in the catalog:

June 11, 2015 31

An additional query service will have been automatically constructed:

and can be employed to extract data using SQL:

Just as for any service output, the result can be previewed in the browser:

and employed as a starting point for compositions, just as any other service.

June 11, 2015 32

A number of example datasets are pre-installed in the system. The following table lists some examples. Just
search the Datasets category tag to find these and others in the catalog:

AIRPORT Airport name, code, city and latitude-longitude information

BALTIMORE CITY EMPLOYEE SALARY
2014

Baltimore city employee salaries 2014

CALIFORNIA INCOME TAX Income tax returns for state of California by county for tax year 2009

EURO FOREIGN EXCHANGE RATE Euro daily foreign exchange rate from January 4,1999 to April 8,
2014

IRIS Fisher's Iris flower data

NEW YORK BABY NAMES New York region baby names from 2007 to 2012

NEW YORK HOSPITAL New York hospital cardiac surgery from 2008 to 2010

SEATTLE TECHNOLOGY FUNDS Technology projects in Seattle that have been awarded funds from
1998 to 2013

SAN FRANCISCO BICYCLE PARKING San Francisco city public bicycle parking locations

SAN FRANCISCO HOUSE PRICES San Francisco metropolitan area monthly house prices from
December, 1986 to April, 2013

WORLD DISASTERS World disasters from 1900 to 2008

US PUBLIC LIBRARY US public library survey for fiscal year 2011

In these datasets, the data is actually contained within our system. A key competitive advantage of many
service developers is the underlying data on which their service depends. Since they may be unable or
reluctant to give that away, we also needed a mechanism to advertise usage via their services. That’s handled
via the special-case of Reference datasets. These don’t include any data directly, but can be discovered in the
catalog, and they link to related services, serving as a navigational aid for users and a capability advertising
mechanism for developers. Currently these are added to the catalog via manual editing/ingestion, but in the
future will be supported via the catalog UI.

June 11, 2015 33

Accessing External APIs
While we would generally prefer developers rely entirely on our own system, we recognize both the mass of
existing services and the need for some services to run on dedicated hardware. Thus we also support access
to external web APIs from within our platform.

Custom services for external APIs

The general idea is to construct a thin wrapper which appears just as any other service inside our catalog.
Inside that wrapper the CLASP inputs are converted to API-specific ones, the external API is called, and the
results are then converted into CLASP outputs. These wrapper services are created exactly as any other Java
or scripted service (though you may need to be an administrative user to add the service while bypassing the
security checks, allowing external access from within a service).

An especially common case is for web services which generate JSON output, and so we have a semi-
automated process for those. Simply drop the JSON Schema describing the output onto the add/edit catalog
entries box (it must end in .json to be recognized), and we’ll generate a scripted service using Python with a
pre-populated output described by your schema, and an example input parameter:

June 11, 2015 34

You can then edit that example to create your custom service, adding/modifying input parameters as
necessary. In common with all scripted services, each input parameter will have its value set by CLASP
before your code is executed. So in the above example the input ‘example_input’ can be used in the script.

The output parameter details will have been prepopulated using the provided schema, but you may wish to
manually edit the name (extracted from the schema title) or description (extracted from the schema
description) since the schema values for those can sometimes be a little terse.

After editing, the remaining steps to describe, test, and publish are consistent with any other catalog service.

Bulk Ingestion of services for external APIs

It’s generally easiest to add individual services manually. However, when a large number of new services are
needed, automation becomes necessary. This is particularly true when wrapping external APIs so they can
appear as services within the catalog.

The recommended procedure is as follows:

1. Obtain the most structured and machine-readable form of documentation possible. It’s not
uncommon for html or pdf files to have been generated from some more structured format, and so
worth asking if the source data is available.

2. Build a single service manually to exercise a representative API call. This will aid you in
finding/fixing any issues with networking or permissions early, and this service will serve as a
template for all the other services. It’s usually easiest (though not necessarily fastest) to write this
using Python as the scripting language. Once that’s working, use the Download option for your
service on the Add/Edit Catalog Entries page to obtain a copy.

3. Now write a script which mines the documentation files, generating one service description.json file
for each API using your manual service as a template, and create a .zip file for each service including
that generated description.json and an icon.

4. Try dragging/dropping several of those to the catalog to test they work and fix any issues by editing
your generation script.

5. Now, to add all the services to the catalog, you have some choices. As an external user you can
manually drag/drop each one – requiring only a few minutes per service, you could reasonably do
over one hundred in a day. The downside is that you’ll need to edit each service in order to make
any subsequent change. If you have access to the servers running CLASP, you can generate a single
.zip containing all of your service.zip files, and then add that to the installation directory for CLASP,
editing the appropriate properties file to include that .zip file as one of the initial sources for all the
system services in the catalog at startup time. In this way your service generation code can be
checked into a source code repository and run as part of a standard build process.

June 11, 2015 35

Implementation and Infrastructure
The CLASP system handles both the catalog and task execution, where a single Task is one invocation of a
Service (which may be composed of several component Services, which may themselves be composed, and so
on).

Applications invoke Tasks directly using the Task Execution engine which pulls necessary service descriptions
and code from the Catalog. These are cached, speeding subsequent calls to any service. Subsequent internal
processing depends on the service language. For Java, the required .jar files are loaded from the service
description using a custom class loader prior to invoking the execute method. For scripted services, a custom
run-time version of the script is generated by combining the task inputs/outputs with code from the service
description, and then executed via the appropriate language runtime. The services may directly access CLASP
Datasets, and/or external data, or services.

Logical View

The Catalog is split between the client browser UI and the back-end to support that. Basic operations are to
add and publish entries (persisted in the Catalog DB), search and display service details (querying the Catalog
DB), and testing services (via requests to the Task Execution engine). For datasets, the Catalog additionally
supports inserting data into the Dataset store, and querying for preview generation.

Catalog UI (in User Web Browser) External application (Browser or Server)

Catalog
Backend

Task execution
Catalog DB

Dataset DB

External
services

External Data

Figure 3. Logical view of the CLASP system

Physical View

The CLASP system physical implementation follows a regular web-server model, with a load balancer at the
front, followed by several Tomcat servers to process servlet requests, backed by several databases providing
persistence and consistency.

In current deployments the servlets for handing Catalog UI requests and those for processing Tasks
(including all required languages/libraries) are present on every Tomcat server. This is an implementational
convenience, allowing a single configuration. It should be possible to split those, having the UI on one set of
servers behind one load balancer and the execution on another set of servers behind a second load balancer,
allowing the UI to function smoothly even if the task execution servers became overloaded.

June 11, 2015 36

Databases hold all persistent state, permitting subsequent requests to be routed to any server, allowing
additional Tomcat servers to be added at runtime, and limiting the effects of any machine failure to only
current or recent operations performed on that particular server.

Tomcat Server(s)

Client Machine
(Catalog UI)

External Machine
(Applications)

Catalog servlets Task servlets

R

PythonJava

Javascript

Catalog DB Server(s)

Relational DB

Catalog Data Server(s)

Vertica

Load Balancer Server

Figure 4. Physical View of the current CLASP system implementation

This figure corresponds to our current and recommended deployment. However if that level of redundancy
and complexity is not required then much simpler installs are possible. We have, for example, installed the
CLASP system on a laptop for demonstration purposes. In that case we can dispense with the load balancer
and use single-node versions of the databases. Our nightly build server has a similar single-node
configuration, running a full CLASP system updated nightly from the build as part of our testing process.

Security

Designed for deployment behind a corporate firewall, we have somewhat lower requirements for security
than a public website. Nevertheless there are a number of security issues to consider.

For adding new services to the catalog we require users to login first. In our current implementation this is
either by using LDAP, or by using an Autonomy API Key. The login requirement provides recognition (we
show user’s names alongside their services) but also provides attribution so any problematic service can be
traced back to the original author and the users of such services know who to contact for assistance. User
accounts within CLASP are created automatically upon the first login and our reliance on external
authentication means we can avoid storing any passwords.

When running services, we are concerned not to accidentally retain any user-supplied information. Much of
that comes as a convenient side-effect of the stateless nature of service execution, however we have also
considered other ways information may leak and as a consequence have paid particular attention to logging.
When a task is executed we generate a task-specific in-memory execution log and upon completion (either

June 11, 2015 37

successful or unsuccessful) we return that to the caller and remove any copy on our servers. Thus the logging
from service execution is available to the caller, but not to the service developer.

We also limit the execution time for services. Since our developers are internal to the organization, this is not
so much for malicious intent, but instead primarily to catch programming errors. The typical timeout is short
(only a minute or so) but we have practical use-cases where longer times are needed, and we do allow longer
timeouts to be requested during task invocation. Again, this is a case where we trust our users, but with some
limit to catch errors.

For service ingestion, we add additional checks for security with the goal of limiting services from performing
harmful operations. For scripted services we parse the script to find problematic commands such as exec or
command-line invocations, and prevent the ingestion of those by non-administrative users. If the catalog
were public, we would also have to lock down Java services – there are some techniques for limiting the
available libraries and/or running inside sandboxes which may be helpful, but since out current users are all
internal to the organization, and the system is within a firewall, we’ve been able to avoid adding that
complexity. In anticipation it may be needed later, we do have the ability for services to make security
assertions (which are shown to users, and may be verified programmatically) via the security property in the
service description.json.

Speed

Execution speed is a perennial issue for all systems, and CLASP is no exception. We have thus expended
some effort to quantify and reduce system overhead. Somewhat surprisingly, the logging system was our
largest overhead, and we eliminated much of that cost by moving to a customized in-memory logger. A
second cause of significant delay was a misconfigured proxy setting, and so for future installations we
recommend checking that via the benchmark ByteCounter service in the catalog to verify correct
configuration.

Since our services run inside a servlet and are accessed via HTTPS, we pay the cost of that overhead, but it’s
largely unavoidable while retaining common web standards and development usage patterns. On our
system/network we see an overhead of around 24ms for calling any servlet via HTTPS. The additional
overhead of CLASP services is around 2ms. For CLASP services which read content from external URLs (a
particularly common case), the speed of ingestion is similar to using wget from the command-line at around
25ms for 10 Mb via HTTP from a local server (in practice it’s much larger since the servers are typically much
further apart, but that overhead is outside our control and again unavoidable). We also need to read data
from databases, and we have similarly optimized that operation, so the speed for SELECT statements is now
approximately the same as querying using standard command-line tools.

Note that the very first execution of each service on any server requires the server to load and cache the
service description and any executable code, so all services will take as much as several hundred milliseconds
longer the very first time. Also note that the servers are shared, and so may also be simultaneously processing
tasks from other users.

Our internal deployment uses a load balancer and multiple servers, this adds redundancy and supports larger
loads, but with the inevitable added cost of the additional network transactions.

The system operates in a web-server style, where many requests are processed simultaneously, thus the time
to complete N tasks is typically substantially faster than the time-per-task multiplied by N. We have
parallelization at the task level, with the expectation of there being many tasks and maximize throughput by
minimizing the work required for each individual service.

June 11, 2015 38

Example performance measurements are shown in Figure 5 and Figure 6. In this case we’re using a large
number of threads to simultaneously fire requests at the CLASP system. Each of those threads simulates an
application which sends a new request as soon as the response from its previous request is received. Using
the simplest in our catalog (HelloWorld), it is a throughput test which should be limited by the overhead of
CLASP and our servers rather than any service processing or I/O.

Figure 5. Task execution time (as measured by the client). Notice that even with 500 simultaneous threads
(simulating 500 applications) the average processing time remains less than 200ms with dual servers.

Figure 6. Tasks completed per second with up to 1000 client threads (each simulating an application). Once there
are more than half-a-dozen simultaneous requests the load balancer overhead becomes insignificant and under

heavy load the dual servers offer significantly better performance.

These results are not surprising, following a typical web server model, and demonstrate that our service
execution doesn’t impede that conventional scale-out behavior.

0

200

400

600

800

1000

1200

0 200 400 600 800 1000

Av
er

ag
e

ta
sk

 ti
m

e
(m

ill
is

ec
on

ds
)

Client threads sending simultaneous requests

Single server

Dual servers
with Load
Balancer

0

500

1000

1500

2000

2500

3000

1 10 100 1000

Ta
sk

s
pe

r s
ec

on
d

Client threads sending simultaneous requests (log scale)

Dual servers
with Load
Balancer

Single server

June 11, 2015 39

Service Definition
Services are defined by a JSON document which defines service operation along with the input and output
parameters, and contains human-readable content for the catalog. In many cases service descriptions will be
created automatically as you edit the corresponding catalog entry and so you need not be concerned with the
internal details. However, with Java services you need a minimal description.json so you can run and test your
service locally prior to uploading, and for all languages, if you choose to download your service it will include
a description.json file. The description file has four mandatory fields, while the remainder are optional and if
absent will typically be added by the catalog automatically when the service is ingested.

For Java services, the four mandatory fields are engine and className for the code, along with parameter
inputs and outputs. So the smallest legal Java description.json is:

{
 "engine":"Java",
 "className": "com.hp.clasp.example.service",
 "inputs":{},
 "outputs": {}

 }
For scripted services, the minimal service is similar except the code itself is included in the service
description. For example, for R:

{
 "engine":"R",
 "RScript": " # R code goes here “
 "inputs":{},
 "outputs": {}
}

And similarly for Python and JavaScript – just replacing each occurrence of ‘R’ with the scripted language
name.

Of course, to do something interesting, you’d need at least one input or output, these have similar
definitions1, with a typical example of an outputs definition being:

“outputs”: {
 "msg": {
 "name": {"en":"Message"} ,
 "type": "string",
 "description":{"en":"An example output message"}
 }
}

This includes the machine-readable identifier (msg) and type, along with the human-readable content for the
catalog (name and description) which in this case happens to be in English (en).

1 At the time our JSON format was created, the JSON Schema was immature, it has since improved, and so it may be
worth adjusting the specification in the future to use JSON Schemas to describe the inputs and outputs. We do have
additional information not captured by the standard JSON Schema parameters, but it permits additional entries which
could be used to support our needs. Note that we do already support the use of JSON Schema to describe individual
input or output parameters with type application/json.

June 11, 2015 40

Common parameter definitions

The most commonly-used parameters are as follows:

 id An identifier for your service. This must be unique across all services by all authors, and
will be maintained by the catalog.

 version The version number of this service. This will be updated and managed automatically by
the catalog so that changes in versions can be associated with informational messages
for catalog users.

 engine The engine on which this service can run. For example 'R' for R scripted services.

 name A short human-readable name for your service (just a few words). To avoid user
confusion this must also be unique to your service.

 shortDescription A short description of your service. This will be shown when your service is included in
a list of services, so it should be meaningful to a novice user who sees only the name,
icon, and this short description, but also relatively short.

 description This is a longer description. It can be several paragraphs long if you prefer, and will be
shown when a user views the details of your service.

 categories This is an array of the category tags in which your service should be shown in the
catalog. These are the Wikipedia categories such as Image Processing, Parallel
Computing, Text Processing, etc. It is desirable to have both narrow and broad
categories to aid future search operations.

 developerName This is the name of the developer (either a person or a company). You need not list your
own name here if you don't want to.

 developerURL This is a unique URL for this developer. It is important to use the same URL for all
services you develop. (In the future, we'll use this to arrange services by developer while
browsing the service catalog.) If you don't have your own website, use an email address
with a mailto transport, for example: mailto:somePerson@someProvider.

 support This is the URL which users can visit to obtain support for this particular service. This
should be a link to your own web page. Each service you develop can have a different
support URL if you wish. Again, if you don't have your own website, use an email
address with a mailto transport, for example: mailto:somePerson@someProvider.

 security An assertion by the service developer that the service does not perform particular
operations. Currently only used for Java applications, and only for a visual indication, it
is intended as the basis for later more sophisticated and verifiable assertions. An
example is: { "java.io":false } indicating this service does not perform i/o operations
other than via the CLASP-provided functions (and hence that it could not secretly
transmit user data to an unknown party during execution).

 icon This is a small image in PNG format with the name 'icon.png' that represents the
service. It should be square and we recommend 256x256 pixels.

 notice This text appears toward the end of the description in the displayed service details. It’s a
convenient place for any ancillary information such as acknowledgements.

June 11, 2015 41

 bibliography This is the bibliography, allowing you to include references or footnotes in the human-
readable descriptions. To use, first place a citation with the form: \\cite{†} in any
piece of the text (for example in the description property). And then within this
bibliography parameter, include one property for each citation with the form:
"†" : {"en":"some reference here"}
In this example we’ve used the dagger symbol, but you can use any other symbol as well
(for example ‡ or §), allowing disambiguation for several footnotes in a
single service.

 inputs and outputs These are the inputs and outputs for the service. These are JSON objects in which each
attribute uniquely identifies one i/o parameter, and the value of that is a definition
object containing:

 name A human-readable name for the input or output.

 description A human-readable description for this property to be displayed for
developers. This is a good place to describe any limitations on the
accepted values.

 type The type of this input or output parameter. This may be one of the
scalar types: 'number', 'string', 'image', 'boolean'; or any MIME type,
for example: 'text/plain', 'application/pdf', 'image/jpeg'; or a
sequence of strings, images, or any MIME types, for example:
'sequence[string]', or 'sequence[image/jpeg]'. Wildcards are also
supported in the MIME types, for example: 'image/*' is any image,
while 'sequence[*/*]' is a sequence of streams whose type is
unknown. In addition, we support R-specific types of R-Vector, R-
Matrix, and R-Dataframe. An R-Vector can be automatically mapped
to text/*, where each line is one entry in the vector. An R-Matrix,
can be mapped to text/csv, where each line is one row, and each
entry is the value for one element. An R-Dataframe can be mapped
to text/tsv, where each line corresponds to one row, each entry to
one element, and the first row has column names.

 required If true, the parameter must have a value in any input task, if false, the
parameter need not be supplied.

 schema The optional schema of this input or output parameter. This is most
commonly-used with parameters of type application/json to hold the
JSON Schema describing the parameter value.

 default A default value for the parameter when displayed in a user interface.
This is most useful for input parameters, and for non-scalar output
parameters.

 style The optional style property only applies to inputs. It may be absent
(implying a normal input), or set to password (implying the parameter
is a password and changing the user interface display and managing
cookies accordingly), or constant (in which case the value is always
the default value, and, being supplied automatically to the service, it
need not appear in the UI).

June 11, 2015 42

 x and y The x and y location of this parameter in the displayed compositional
editor. Rather than placing objects automatically (and frequently
getting it wrong) we instead just remember where the user chose to
place the parameter and then replace it in that same spot. In this way
the view inside the editor remains consistent across editing sessions,
and has spacing between parameters and components considered
appropriate by the service creator.

Elementary service parameters

Elementary services (which are not compositions, but actually contain code) must have one of the following:

 className This is used only for Java services, and is a full Java class name that that implements
the service. When you create a Java service (see section "Service Development
Using R, Python, Javascript, or Java"), you will create a ZIP file containing the
description.json file, the service icon, and one or more JAR files with the required
Java classes. The className parameter is the name of the class that extends the
CLASP Service class and implements your service. In the HelloWorld example
above, this would be "com.hp.clasp.example.HelloWorld".

 RScript This is used only for R services, and contains the R code which implements the
service.

 PythonScript This is used only for Python services, and contains the Python code which
implements the service.

 JavaScriptScript This is used only for JavaScript services, and contains the JavaScript code which
implements the service.

 PigScript This is used only for Pig services, and contains the Pig code which implements the
service. While we don’t currently support Pig in our production system, we have
used it in the past, and it’s another example of a scripting language.

For each of the scripted services, you can generally take a conventional script which works on your local
machine and then just drag/drop the file into the add service box in the catalog.

June 11, 2015 43

Java Hello World Example

Here’s an example of the description for the Hello World example:

{
 "id": "abc.xyz.helloWorld",
 "version":0.1,
 "engine":"Java",
 "className": "com.hp.clasp.example.helloWorld"
 "name": {"en":"Hello World Service"},
 "description": {"en":"This is a very basic example service which simply says Hello."},
 "shortDescription": {"en":"Basic example service"},
 "categories":["miscellaneous"],
 "developerName": {"en":"HP Labs team"},
 "developerURL": "www.hp.com",
 "support": "TBD",
 "icon": "icon.png",
 "inputs": {
 "inputName": {

"name": {"en":"input"} ,
"required": true,
"type": "string",
"description":{"en":"Name"}

 }
 },
 "outputs": {
 "output": {
 "name": {"en":"output message"} ,

"type": "string",
"description":{"en":"The output salutation"}

}
 }
}

June 11, 2015 44

Scripted Fast Fourier Transform Example

Here's an example description.json file for our automatically-generated R Fast Fourier Transform service:

{
"name": {"en":"R fft Service"},
"id": "hpl-stats-fft",
"version":"1.0",
"shortDescription": {"en":"\"Fast Discrete Fourier Transform\"\\cite{†}"},
"description": {"en":"\"Performs the Fast Fourier Transform of an array.\"\\cite{†} This is an
automatically generated service that is currently at an experimental stage. Please let us know if you
experience any problems when using this service."},
"engine":"R",
"categories": ["R","Statistics","RExt"],
"developerName": { "en": "HP Labs" },
"developerURL": "www.hp.com",
"support": "TBD",
"icon": "icon.png" ,
"inputs":{
 "zInput": {
 "name": {"en":"z"} ,
 "required": true,
 "type": "R-Matrix",
 "default": "example:hpl-stats-fft-Matrix",
 "description":{"en":"a real or complex array containing the values to be transformed."},
 }
},
"outputs": {
 "fftOutput": {
 "name": {"en":"fftOutput"} ,
 "required": true,
 "type": "R-Dataframe",
 "default": "task:fftOutput",
 "description":{"en":"Output of the R fft service."},
 }
},
"RScript": "library(stats);\nlibrary(methods);\nlibrary(nlme);\n
 function_Output=fft(z=zInput);\nfftOutput=function_Output\n",
"notice":{"en":"When this service is executed it calls the R function fft(). The full documentation is available
with R from http://www.r-project.org/. R is free software and
comes with ABSOLUTELY NO WARRANTY. R may be redistributed under the terms of the GNU General Public License."},
 "bibliography":{ "†": {"en":"The documentation for this service was created automatically based on
the help file for this function. The full documentation is available with R from <a href=\"http://www.r-
project.org/\">http://www.r-project.org/. "}

}

June 11, 2015 45

Composition Definition and Example

Composed services are described in the service description.json with a graph model, where component
services and I/O parameters are the nodes, and connections between them are the edges. You can easily
construct compositions graphically using the catalog UI, so the following description is only for those rare
case where composed service descriptions are generated outside the interface (for example by using a script).

 components An array of component services. For a composition, this must contain at least one
service, each object in the array is one component service and has:

 id A local ID for the service within this composition (a service may be
included more than once, hence the need for an ID which is distinct
from the ID of the service itself).

 service An object identifying the component service. This is a particular
instance of a service with unique id and a defined version and engine
so there is no ambiguity. There is exactly one service in the catalog
with these three matching values:

 id the identifier for the component service (this is the id
parameter at the top level of the service’s
description.json).

 engine the engine for the component service.

 version the version number for the component service.

 x and y The x and y location of this service in the displayed compositional
editor. Rather than placing objects automatically (and frequently
getting it wrong) we instead just remember where the user chose to
place the service and then replace it in that same spot. In this way the
view inside the editor remains consistent across editing sessions, and
has spacing between components considered appropriate by the
service creator.

 connections An array of connection Objects describing edges between nodes in the composition.
Each connection comprises:

 from and to The source and destination nodes for the connection. Each of which
is described by:

 component the identifier for the component (note that this is the
local ID from among entries in the components array).
If this is absent, the connection is from/to an
input/output parameter for the composition.

 param the identifier for input/output parameter comprising
the source or destination of the connection. This may
be an externally-visible parameter of a specified
component, or, if no component is specified then it is a
parameter of the composition itself.

June 11, 2015 46

Here’s an example of a simple composition showing the parameters (a, b, and c), components (A and B), and
connections (1, 2, 3, and 4):

{
 "name":{"en":"Craig Sayers Composed Hello World Service"},
 "id":"composition_14274752025012094154699",
 "version":"1.0.1427475257095",
 "engine":"Hybrid",
 "description":{"en":"This is a very basic example service which simply says Hello."},
 "shortDescription":{"en":"Basic example service"},
 "categories":["Demonstration","Hybrid"],
 "developerName":{"en":"Craig Sayers"},
 "developerURL":"www.hp.com",
 "icon":"icon.png",
 "inputs":{
 "name":{ (a)
 "name":{"en":"Name"},
 "required":true,
 "type": "string",
 "description":{"en":"any text name"},
 "default":"CLASP User",
 "x":40,"y":40
 },
 "inputString2": { (b)
 "name":{"en":"Second input string"},
 "description":{"en":"Second input string to be concatenated"},
 "type":"string",
 "default":"have a nice day!",
 "style":"constant",
 "x":327,"y":217
 }
 },
"outputs":{
 "outputString":{ (c)
 "name":{"en":"Salutation"},
 "description":{"en":"Concatenation result"},
 "type":"string",
 "x":892,"y":304
 }
 },

June 11, 2015 47

 "components":[
 {
 "id":"1816",
 "service":{"id":"com.hp.clasp.example.helloWorld","version":"1.0","engine":"Java"}, (A)
 "x":328,"y":40
 },
 {
 "id":"concatenator1",
 "service":{"id":"com.hp.clasp.utils.concatenator","version":"1.0","engine":"Java"}, (B)
 "x":603,"y":133
 }
],
"connectors":[
 {
 "from":{"param":"name"},
 "to":{"param":"inputName","component":"1816"} (1)
 },
 {
 "from":{"component":"1816","param":"output"},
 "to":{"component":"concatenator1","param":"inputString1"} (2)
 },

 {
 "from":{"param":"inputString2"}
 "to":{"param":"inputString2","component":"concatenator1"}, (3)
 },
 {
 "from":{"component":"concatenator1","param":"outputString"} (4)
 "to":{"param":"outputString"},
 }
],
 "notice":{"en":null},
 "bibliography":null
}

June 11, 2015 48

Multiple Catalogs and Sharing Services
In the current implementation every user sees every published catalog entry, and we expect users to be
reasonably responsible and not deliberately break the system. That’s appropriate for our target usage where
catalog installations are inside a corporate firewall, and suits our common use-cases, where some services
require direct access to private devices or databases. Since each organization has its own firewall, this
necessitates having at least one catalog instance per organization.

Each catalog installation includes a set of built-in services. Loaded at startup, and generally standardized
across installations, these are immediately available for use, providing convenient functionality out-of-the-
box.

Given multiple catalog instances, it will be natural to share services among them. For manually-added
services, any service developer can utilize the ‘download’ button beside each service on their add/edit catalog
entries tab, obtaining a service.zip file which can then be dragged/dropped onto the same tab on any other
catalog.

For larger numbers of services, more automation is necessary, and possible via a two-step process:

On any catalog, when an administrative user does any search they are presented with an additional
“Download All” button on the results page to gather all the services matching that query (including all the
service code) into a single .zip file.

The administrator of any other catalog can choose the sources for initial default services (those visible in the
catalog which are part of the system upon startup and automatically updated whenever the system restarts).
There can be a list of such sources and that list can include URLs to local or remote .zip files containing
additional services.

Thus a .zip of services can be generated on one catalog, and ingested at startup time into another catalog.

June 11, 2015 49

Internal Service Execution Process

Elementary services

For services written in Java, the process is as follows:

1. If not already cached, then load the description.json and, using a custom ClassLoader, any necessary
.jar files

2. If handling any of the inputs or outputs would require temporary filesystem storage then create a
temporary task-specific working directory

3. Construct an in-memory Logger specific to this task
4. Construct the Task object, using the specified inputs and outputs.
5. Run the service using the execute(task) routine
6. During execution, the service code may get/set parameters from the Task. Some of these may be

streams which requires opening/reading/writing/closing those
7. After execution completes, prepare any output parameters (which may involve persisting them and

returning a URL), collect the log, and return task execution results to the caller
8. Tidy up by removing any temporary working directory and any constructed objects (including the

Task and Logger).

Notice that in this process there is no state from the task remaining except any persisted results requested by
the caller.

For scripted services the process is similar except that we generate a custom script, combining the requested
I/O parameters with the body of the script (from the description.json) and then execute that, capturing
anything written to stdout as info entries in the log, and anything written to stderr as error entries in the log.

In past implementations, we also implemented asynchronous processing, where a task is submitted with the
immediate response containing not the results, but rather a link to check on the status and later retrieve
results. That style is appropriate when processing takes a long time, however while simple to achieve in a
quick experiment, it is tricky to handle all the corner cases correctly in the case where machines or networks
may fail. In practice, we found our typical tasks executed surprisingly quickly, even for relatively large
datasets, and so it was preferable to keep the implementation simple and optimize for the speed of processing
tasks synchronously. In the synchronous model, an incoming request is simply directly processed by the
recipient servlet and the response returned directly, thus there is no additional queue overhead, no additional
transactions to check on the tasks status, and since the http connection remains open during execution, it is
immediately obvious to both the caller and our server if the network or machine at either end fails.

Composed services

For composed services, the basic process for execution is to construct a dependency graph of the component
parts, execute services which have no dependencies, and then remove those as dependencies from remaining
services, continuing until all services have been completed. In the event any component fails, the entire
execution is aborted, with the error log being returned to the user. Execution timeouts help to catch
inadvertent errors.

In some special cases there is the opportunity to optimize execution. For example, if two R scripts are
composed, we can generate a single script containing the body of each, where any connection between them
becomes an assignment operator in the resulting script. In this way the composed service is similar in
efficiency to a custom script performing the same operation as the composed service.

June 11, 2015 50

Our first implementation for composition was actually the most complex, where we ran each component
service in a separate thread and wrapped parameters passed between services using a concurrent latch so that
whenever a service requested an input parameter it would block until the preceding service had output that
value. For streams we piped outputs to inputs and for sequences we used locking on the iterator, again
causing the receiving service to block until the next value (or end of the sequence) was available from the
preceding service. This had some desirable properties, in particular it allowed component services to run in
parallel and pipelined, and we could just start all the components at once allowing the locking to control
execution ordering. Error handling and logging was complex since several components could fail
simultaneously, but avoiding deadlocks required additional work. Consider the following:

Developer A writes a service which generates an output stream and then writes the number of
generated items to a numeric output

Developer B writes a service which reads in a numeric item count, and then reads that many items
from an input stream.

Developer C combines those services connecting the output stream from A to the input stream for B,
and the output count from A to the input count for B.

Now when the composed service is executed both services start, but B waits for the count before it
starts to read from the input stream, while A won’t write the count until it finishes writing the output,
but it’s limited in the ability to output since B isn’t yet ready to accept the stream. Thus the composed
service will timeout and Developer C may be unable to recognize the issue without internal knowledge
of the component services.

Removing the deadlock is possible, but requires additional buffering, so A can write out the entire
stream before B is ready to read the first byte.

That approach introduced significant complexity along with the additional overhead of thread creation,
locking, and buffering even for quite simple composed services. Since we’re interested in optimizing quality
and throughput of the whole system rather than just speeding up any individual task, it was preferable to
adopt a simpler approach running component services sequentially. While some individual services will take
longer, the total work is reduced and the implementation simpler, so we can run more tasks in parallel.

For the simpler sequential implementation, we still need to consider the dependencies between services. This
is achieved with a simple dependency table. For each service we list all the services from which it needs an
input. Then on each pass we run all the services without any dependencies, removing them from the list of
dependencies for remaining services. In the event we have services remaining and they all have at least one
dependency then we must have a cycle in the composition, causing it to be immediately aborted with a
suitable error message.

For passing data between component services the values of elementary variables (string, number, etc) are
simply copied directly, while for output streams we need to buffer those, allowing the sending service to run
before the receiving service. We found files to be both simplest to implement and surprisingly fast. Modern
systems have great optimization for the case where small (less than 1Mb) files are written and then
immediately read, and so we benefit from that, allowing a very simple implementation with quite adequate
speed. Recall that a composed service is executed within a single servlet request on a single machine, so there
is no network communication and only temporary files.

As mentioned previously, for scripted services, we may treat composed services in the same language as a
special case, using judicious rewriting to simplify execution. In particular, we may combine the component
scripts into a single longer script and replace parameter connections with assignment statements.

June 11, 2015 51

Semi-automated descriptions and schemas
We also experimented with the automatic ingestion and execution of Pig scripts2. While not in our
production system, it is an interesting example because the nature of Pig permitted exploration of features not
easily attainable in other systems.

The core ideas were that we could both determine Relation schemas and automatically-generate human-
readable descriptions from the code itself (note this is different than the other scripted languages, where we
can only construct types and parameter descriptions automatically).

Example script

Here’s an example Pig script which runs locally and will be a working example for subsequent sections:

Words = LOAD 'input' USING PigStorage() AS (word:chararray, freq:int);
ordered = ORDER Words BY freq DESC;
TopN = LIMIT ordered 500;
STORE TopN INTO 'output‘;

Schema extraction and cataloging

In common with other scripting languages we can automatically determine the input and outputs, also picking
up their types and in some cases the relation schema (as in the input here), and extracting the core code:

Each schema is compared to existing catalog schemas using a similarity metric. The best case is an exact
match on both types and labels, the next best is an exact match on types, and the last option is a subset of the
used parameter types (again with exact names being better).

2 Craig Sayers, Alkis Simitsis, Georgia Koutrika, Alejandro Guerrero Gonzalez, David Tamer Cantu, and Meichun Hsu,
“The Farm: where Pig scripts are bred and raised”, Demo, SIGMOD, New York, 2013.

June 11, 2015 52

In this case, there is a very similar schema which only differs in the name of the second parameter and so it is
presented first among alternative options for the user. The idea is to encourage users to reuse existing similar
schemas rather than making their own. This is also less work for the user, since the existing schema has
already been documented and entered into the catalog. It also has the advantage that popular schemas will
aid other users in service discovery and further encourage reuse. Should the user choose the existing schema,
we automatically adjust the code, changing the parameter names to match the new schema.

If they decline to reuse a pre-existing schema, then we walk them through the process of adding/publishing
as a new schema in the catalog. This is semi-automated, and just as for services, we encourage additional
documentation since the user frequently possesses pertinent information unavailable in the machine-readable
schema. For example, even when the schema used a readable name: ‘client_birthdate’, it is the user who
understands that string must in ISO 8601 date format and that the client must be over the age of 18.

June 11, 2015 53

Generating human‐readable descriptions

In addition to extracting schemas, we can create a human-readable description for the service by examining
the code, building on prior work for generating natural language descriptions of SQL queries.

Here’s what the code looks like in the Pig parse tree for that same Pig example script:

For each Pig expression we have an English language template which we can populate with script content.

For example, the second statement matches the template:

((^1 ORDER ^2 ^3 DESC) ^4) “Compute ^1 by sorting ^2 by ^3 in descending order”

So we generate for that statement:

“Compute ordered by sorting Words by freq in descending order.”

In this way we can generate a description with one sentence per statement. However, the result is rather
unsatisfying, both due to excessive length, and also because it uses many variable names. In this case it
happens that the names are relatively meaningful, but had they just been ‘X’ or ‘Y’ the resulting description:

“Compute X by sorting Y by Z in descending order.”

is only a small improvement over the original script. Fortunately improvement is possible. The trick is to
collapse statements, removing intermediate variables whenever possible – there are limits, since we don’t want
sentences that are a paragraph long, but collapsing a couple of levels works well.

June 11, 2015 54

Using the same example as above, we can collapse to just two statements:

These can then be matched against more specialized templates, in this case the following three:

(STATEMENT ^1 (LOAD ^2 (FUNC ^3) (AS @4))) "Reads in ^1 .";
(STATEMENT (STORE ^1 ^2)) “Writes out ^1 .“
(LIMIT (ORDER ^1 ^2 DESC) ^3) “the top ^3 ^1”

to produce the much more readable full text description:

Reads in Words
Writes out the top 500 Words.

and we can further summarize, generating a short description for the catalog by using the English text for the
STORE statements. To produce:

Writes out the top 500 Words.

resulting in the catalog entry:

Astute readers will notice that in generating the natural language description using the more sophisticated
template we left out the variable with which the top words were generated. In practice we found this and
other compromises between brevity and detail acceptable, but since we have the additional information, it
would be possible to enrich the description so that, for example, hovering over ‘the top 500’ could show how
that was determined.

The human readable descriptions will never be as good as hand-crafted text, however they are a good starting
point and do at least reflect the actual operation of the code. It is not uncommon for users to cut-and-paste

June 11, 2015 55

text between service descriptions, and easy to make a mistake or simply forget to change as the code evolves,
and so having at least an approximate initial text helps maintain quality. Based on our own usage, we find it
both less daunting and easier to modify an initial machine-generated description than to start with an empty
text box and write from scratch.

Optimizing composition using schemas

Similar to other scripted languages, we can optimize service composition, creating a single script by
combining the service code and using assignment operations for compositional connectors. In Pig we have
the additional complexity that different services may have schemas that are not an exact match. In those
cases we can perform semi-automated schema remapping. This won’t always work, for example even if two
schemas have a string called ‘Id’ with identical descriptions they may still not be the same Identifier, and so
some human verification/testing will generally be necessary.

Automated text and compositions

While obviously applicable to searching for direct services in the catalog, the automated generation can also
aid users in composition. For example, if a user picks one service and enters keywords for what they’d like a
composition to perform, we can find compatible services, generate human-readable descriptions for the
compositions and then use those both for keyword matching and to explain the results to the user.

June 11, 2015 56

User experience
In common with many projects, our success depends in large part on the user experience. If too hard to
understand, or too cumbersome to use, then we fail. Consequently, considerable time was spent optimizing
the user experience. Given the inevitable tradeoffs between perfection and expediency, and between
simplicity and features, there is no perfect solution, but recent versions have proven both easier to use and
more powerful.

The search interface is relatively simple, adopting the familiar text search box and leveraging the human-
readable catalog text. As the number of services increased, the addition of category tags helped to organize
and aid searching:

The number of category tags have themselves increased and will soon require additional assistance. In
particular it will be helpful to allow search over category names in the advanced search, and to show
categories as additional results for the basic text search.

It was the addition and editing of services which proved most challenging, and we went through a number of
implementations and iterations. The current system aims for progressive disclosure, easing users into the
process. For example, consider a new user. They start by browsing the catalog and trying out services –
there is no login required for this. They just start at the home page and either click on a displayed service or
search and explore. Eventually, they may experiment with composition, and at that point, with the
motivation of a specific goal, we ask them to login and then take them directly to the composition interface.
Advancing using the familiar ‘next’ button, they can either proceed all the way to publishing, or save and
return later. In either case, upon leaving that page, they are shown the add/edit entries tab with the service
they just created visible along with additional options for managing the service lifecycle (deprecate, delete,
etc). In this way we gradually expose functionality to the user as they need it, allowing sophisticated
operations without appearing too complex at any point.

June 11, 2015 57

Adding new coded (rather than composed) services was also challenging to simplify and we’ve found a drag-
and-drop interface to work best there. Rather than having users choose the type of catalog entry, they just
drag-drop any file and based on the type we figure out the appropriate style, prepopulating the service or
dataset description. This makes the process less daunting for novice users, and, consistent with the
composition editing, we use progressive disclosure, with interface affordances appearing only as they are
needed. This is shown in Figure 7.

(a)

(b)

(c)

Figure 7. Progressive disclosure in the interface. On this single tab, the user sees three different views depending
on their progress. Starting with signing in, then drag/drop, and then service lifecycle management.

June 11, 2015 58

Controls on the interface for editing and publishing services were perhaps the most challenging, and a
number of iterations were necessary (see Figure 8). For example, considering just the top header of the
interface: An initial tabbed interface had too much content per tab, and the progression between steps was
unclear. Adding additional tabs helped simplify tab content, but adding graphics and check marks was
surprisingly insufficient, with users still reporting they “didn’t know what to do next”. Replacing tabs with a
more conventional progress descriptor with the familiar ‘Next’ button has proven superior.

(a)

(b)

(c)

Figure 8. Edit/publish interface evolution from (a) tabs, to (b) tabs with graphic and check marks to show
progress, and finally (c) a more familiar interface with next/previous buttons.

June 11, 2015 59

Conclusions
Our CLASP system simplifies the publication, discovery, and use of services. For service developers, it
allows programmers to take a local script and turn it into a web service in just a few minutes via a simple
drag/drop interface and wizard-based publication process. For application developers it provides the ability
to verify service efficacy using their own data, gives example code, and provides the ability to build more
sophisticated services via composition.

By simplifying the interface and using progressive disclosure we’ve improved the experience while adding
additional features. As the user base increases, so does the number and scope of services along with our
ability to make recommendations based on observations, both of which should encourage additional usage,
resulting in a desirable positive feedback loop.

Currently containing more than 2,000 services and being used by more than 150 internal developers, it has
shown the benefits of an app-catalog-style approach for the underlying services on which many applications
depend.

June 11, 2015 60

Acknowledgements
The CLASP research project has been a relatively large development effort. We are particularly grateful to
the developer teams in Atlantico Brazil, HP India, HP Brazil R&D, and HP GUAPO in Mexico, along with
our past Summer Interns, our Labs collaborators, local Research Engineering Services, our business unit
collaborators across the company, and our management for their ongoing support.

